Asahi KASEI

AL2010

Current-Mode PWM Step-Down DC-DC Convertor

GENERAL DISCRIPTION

AL2010 is the Current-Mode Synchronous Step-Down DC-DC Convertor which offers excellent transient response. Output voltage is selectable between 0.8V and 5.0V by the external resister. Input voltage range is between 3.0V and 5.5V, and it is the most suitable to generate 1.0V, 1.2V, and 1.8V. Power MOSFETs are built in AL2010, which is maximum current is 2.5A. The switching frequency is selectable between 300 kHz and 4 MHz by the external resister. For the protections, AL2010 has Over-Current protection, Low-Input Voltage protection, and Power-Good function.

FEATURE

Step Down DCDC Converter

Input Voltage Range: 3.0V to 5.5V

- •Output Voltage Range: 0.8V to 5.0V (by the external resister)
- Maximum Output Load Current: 2.5A
- •Operation Temperature: -40°C to 85°C
- •Switching Frequency: 300kHz to 4MHz (Selectable by an external resister. And Available External Synchronous Mode by the external clock)
- ·Low Input Voltage Protection
- Power-Good Function
- •Over-Current Protection (Automatic recovery type)
- Thermal Protection
- Internal Reference Voltage: ±1.5% (Ta = 25 °C)
- •Maximum Duty: 100%
- Soft Start Function
- •PKG: TSSOPE-16

BLOCK DIAGRAM

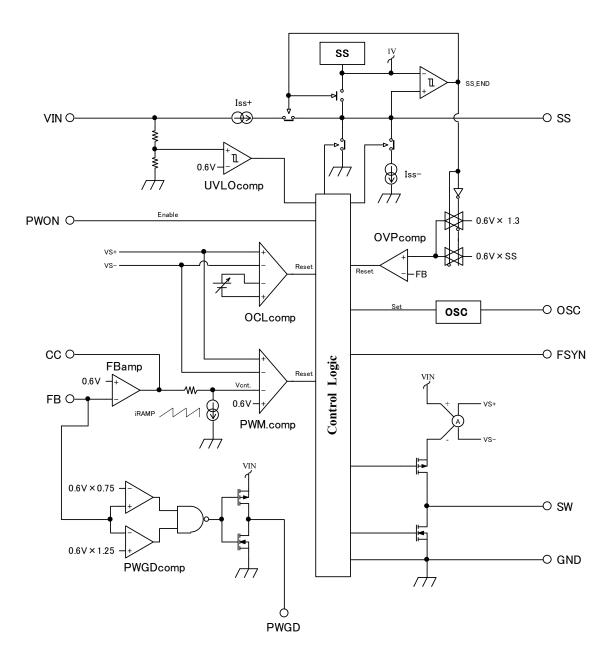
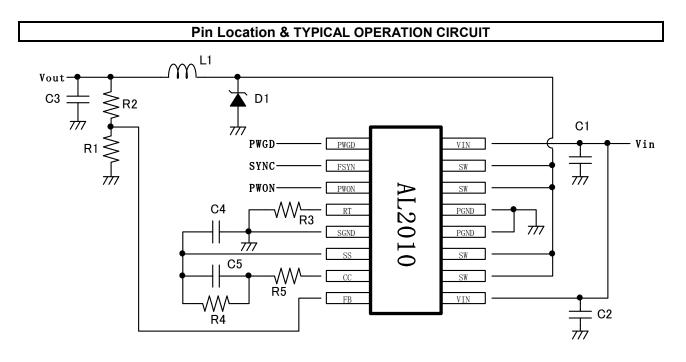
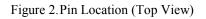




Figure 1. AL2010 Block Diagram

PIN & FUNCTION

No.	Pin Name	Function	No.	Pin Name	Function
1	PWGD	Power-Good	9	VIN	Supply Input
2	FSYN	External Synchronous Clock Input	10	SW	Switching Node Output
3	PWON	Power-On	11	SW	Switching Node Output
4	RT	Frequency Setting	12	PGND	Power Ground
5	SGND	Signal Ground	13	PGND	Power Ground
6	SS	Soft Start	14	SW	Switching Node Output
7	CC	Output of Feedback Amplifier	15	SW	Switching Node Output
8	FB	Feedback Input	16	VIN	Supply Input

ABSOLUTE MAXIMUM RATING

(Gnd=0V; Note 1)

Parameter	Symbol	Min	Max	Units	
VIN pin	VIN	-0.3	6.0	V	
SW pin	VSW	-0.3	Vin + 0.3	V	
All pins (Except SW pin, VIN pin)	VIND	-0.3	Vin	V	
Junction Temperature	TJ		125	°C	
Operating Ambient Temperature	ТА	-40	85	°C	
Storage Ambient Temperature	TSTG	-40	150	°C	
Power Dissipation ($Ta = 25^{\circ}C$)	Pd		2000	mW	

Note1. All voltages with respect to ground.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS

(Gnd=0V)								
Parameter	Symbol	Min	Тур	Max	Units			
VIN pin voltage	Vin	3.0	_	5.5	V			
Output Current	Iout	0	_	2.5	А			
Operating Ambient Temperature	Та	-40	_	85	°C			

*AKPD assumes no responsibility for the usage beyond the conditions in this datasheet.

ELECTRICAL CHARACTERISTICS

		(Vin=5.0V, 7	Ca=25°C, u	nless other	wise specif	ied)
Parameter	Symbol	Conditions	Min	Тур	Max	Units
Operating Input Voltage Range	Vin		3.0	-	5.5	V
Feedback REF Voltage	V _{FB ref}		591	600	609	mV
Operation Current Consumption	I _{SUULY}	No Switching	0.48	0.8	1.12	mA
Stand-by Current	Istandby	Power-Off	-	-	10	μA
Load Regulation *1	ΔV_{LOAD}		-	1	-	%
MOSEET D	Rpmos	PMOS R _{DS(ON)}	10	65	100	mΩ
MOSFET R _{DS(ON)}	Rnmos	NMOS R _{DS(ON)}	10	65	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mΩ
Over-Current Detection	Ioclpeak		3.15	4.5	-	Α
Oscillator Frequency	fosc		300	-	4000	kHz
ESVNI Input Eraguanay Danga	Fext300	RT=702kΩ (at 300kHz)	240	-	360	kHz
FSYN Input Frequency Range	Fext2000	$RT=100k\Omega$ (at 2MHz)	1600	-	2400	kHz
Oscillator Accuracy	facu	$RT=100k\Omega$ (at 2MHz)	-20	0	20	%
Maximum ON Duty	MAXDuty	*2	-	-	100	%
UVLO	Vuvlo	Voltage at Lock	2.30	2.50	2.84	V
UVLO Return Voltage		Voltage at Release	2.36	2.70	2.90	V
UVLO (Hysteresis)	Vuv_hys	UVLO Hysteresis Width	0.06	0.20	-	V
Output Over Voltage Detection	Vovp	against $V_{FB ref}$	+26	+30	+34	%
Charge Current (to Capacitor of Soft Start)	Iss+	$Css=0V \rightarrow 1.0V \text{ (at rise)}$	18.0	20.0	22.0	μΑ
Discharge Current (to Capacitor of Soft Start)	Iss-	$Css=1.0V \rightarrow 0.40V \text{ (at fall)}$	0.75	1.0	1.25	μΑ
Thermal Protection Detection *2			-	150	-	°C
Thermal Protection Hysteresis *2			-	15	-	°C
Power Good Detection		against V _{FB ref}	±16	±20	±24	%
Power Good non-Detection		against V _{FB ref}	±21	±25	±29	%
Power Good Hysteresis			±3	±5	±7	%
Power-ON Threshold	Vponl		-	-	0.4	V
Power-OFF Threshold	Vponh		1.5	-	-	V
Power-ON Hysteresis	· ·		50	100	150	mV
gm (CC pin)			400	500	600	μS

*1. For reference value by the recommended circuit *2. Guaranteed by design and characterization

DC CHARACTERISTICS									
(Ta=25°C, unless otherwise specified)									
Parameter	Symbol	Condition	Min	Тур	Max	Units			
FSYN(Input pin) Threshold	VEih		0.7*VDD	_	-	V			
Voltage	VEil		-	-	0.3*VDD	V			
PWGD(Output pin) Voltage	VPoh	Ipoh=-100µA	VDD-0.4	_	_	V			
	VPol	Ipol=100µA	-	_	0.4	V			

RECOMMENDED CIRCUITRY & PCB LAYOUT

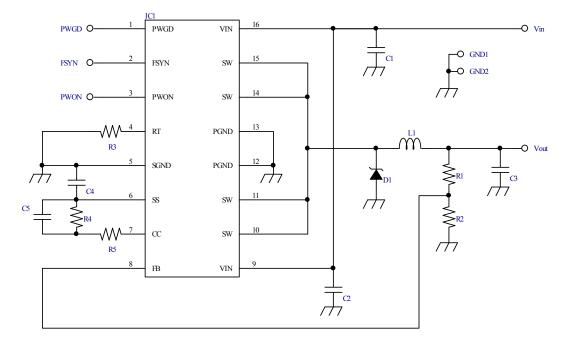


Figure 3. One Example of Recommended Circuitry

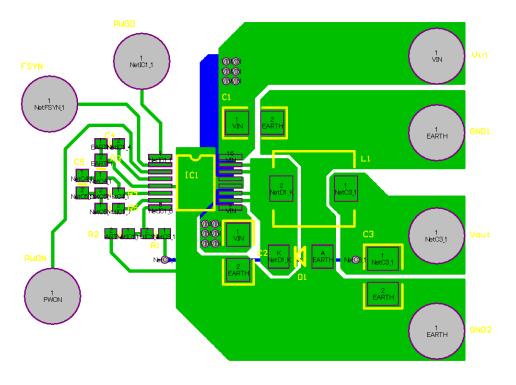


Figure 4. PCB LAYOUT

PIN DISCRIPTION

1 pin_PWGD:

Power-Good pin. When the output voltage achieved to $\pm 20\%$ of set voltage, this pin becomes "Hi".

2 pin_FSYN:

External Synchronous Clock Input pin. Internal pull-up resistor is $300k\Omega$. The external clock within $\pm 20\%$ of relative value is available, which is to the internal clock, and it is set by the resistor at RT pin.

3 pin_PWON:

Power-ON pin. It starts in the voltage which is 1.5V and more.

4 pin_RT:

The setup pin of operation frequency. It is the setup by a resistor.

5 pin_SGND:

Signal Ground pin.

6 pin_SS:

Soft Start pin. It should connect the capacitor of 0.047uF and more between SS pin and GND. It charges an external capacitor at the time of startup, and Soft Start works. And, when the AL2010 is in the protection state of over current, the external capacitor is discharged and it makes the stop time in a hiccup operation.

7 pin_CC:

Output pin of Output Voltage Feedback Amplifier. A resistor and a capacitor are placed in a parallel connection, and those are connected between CC pin and Vref/SS pin. And those compensate a phase of an amplifier.

8 pin_FB:

Input pin of Output Voltage Feedback Amplifier. The voltage is controlled so that this pin voltage becomes 0.6V. Two resistors for the feedback should be placed in a series between the output stage and GND, and the connected point of two should be connected to FB pin.

9 pin, 16pin_VIN:

Input pin of Main Power Voltage. A capacitor should be placed between VIN pin and GND, which is 4.7uF and more.

10 pin, 11 pin, 14 pin, 15 pin_SW:

Output pin of the internal switching MOSFET.

12 pin, 13 pin_PGND:

Power Ground pin.

TIMING CHART AT START-UP

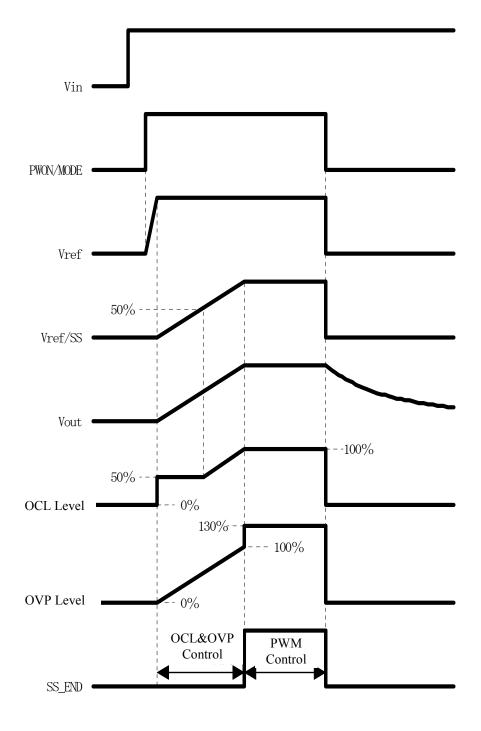
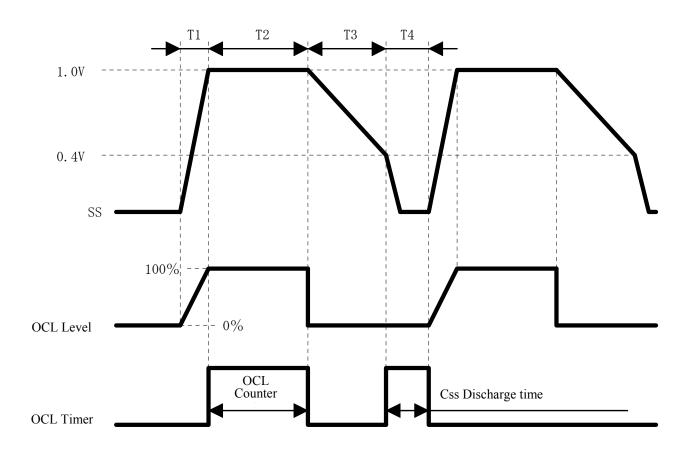
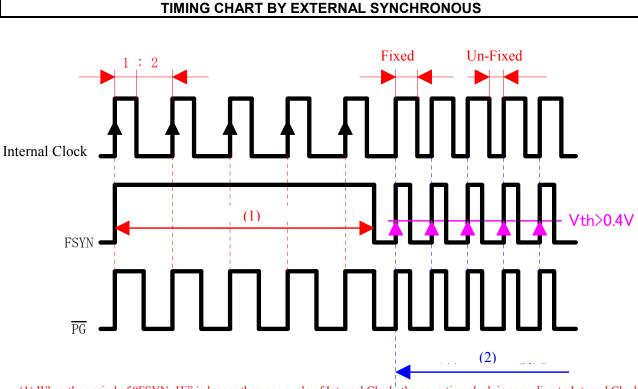



Figure 5. Start Up Timing


TIMING CHART AT OVER CURRENT PROTECTION

When Css=0.1uF, T1: Soft Start Time is 5ms, T3: Rest Time is 60ms, T2: 256us (512 clocks/2MHz) 、T4:192us (384 clock/2MHz)

When Css=0.22uF, T1: Soft Start Time is 11ms, T3: Rest Time is132ms

Figure 6. Over Current Protection Timing

(1) When the period of "FSYN=Hi" is longer than one cycle of Internal Clock, the operation clock is according to Internal Clock.
(2) When the period of "FSYN=Hi" is shorter than one cycle of Internal Clock, the operation clock is according to External Clock.

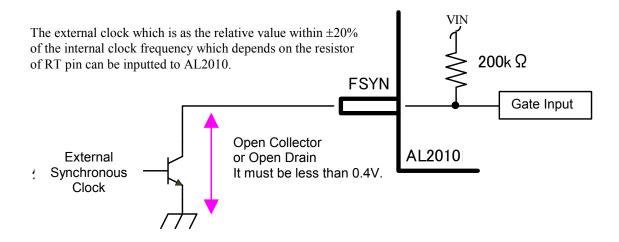
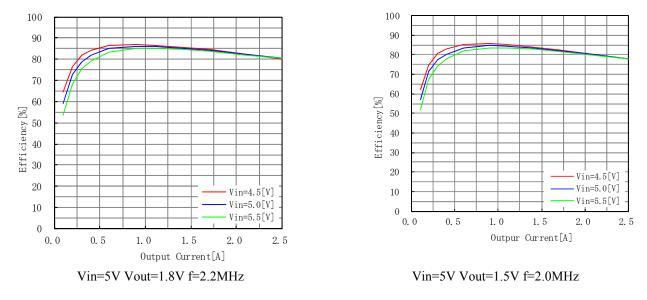
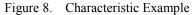
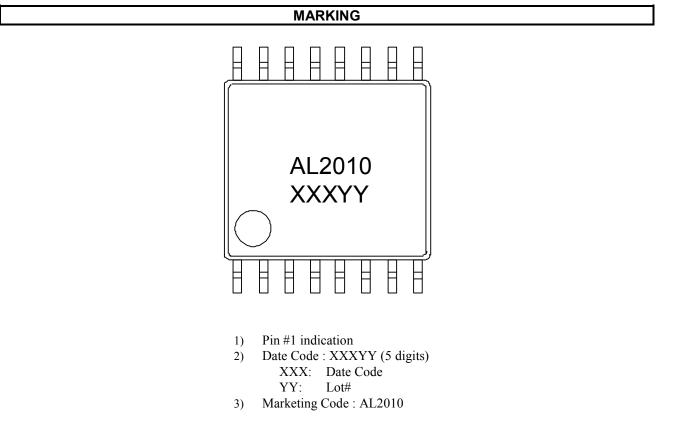
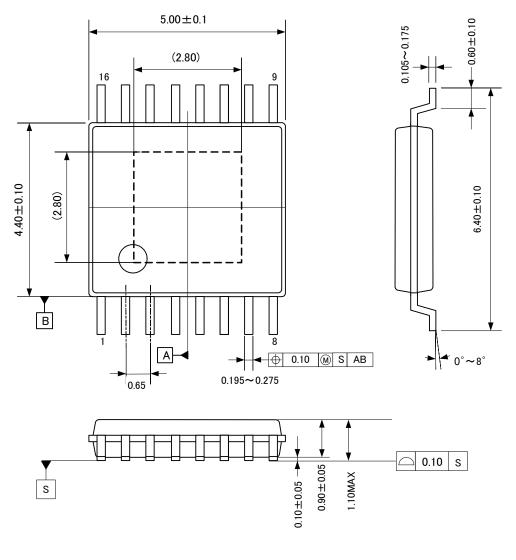
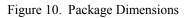





Figure 7. External Synchronous Timing

CHARACTERISTIC EXAMPLE





PACKAGE INFORMATION

16pin TSSOPE (Unit:mm)

(Unit: mm)

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:
 - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or
 - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.